Sohvie Shield: The Definitive Tuning Guide Version 1.0 | Updated: September 11, 2025 #### 1. Introduction This guide provides a comprehensive overview of the Sohvie Shield Al Logic Tuner. Its purpose is to detail the system's core components and provide a clear framework for tuning its parameters to effectively manage and mitigate risks in real-time LLM-driven applications. The primary goal is to keep the system's risk score below intervention thresholds while successfully identifying and handling genuine risks. ## 2. The Core Metric: Aggregated Protective Score (APS*) The central feature of Sohvie Shield is the **APS*** score, a smoothed, weighted metric representing the overall risk of the generated text at any given moment. The system's main objective is to keep this score below the high threshold (θ hi). The APS* is calculated from six underlying signals: - R (Repetition): Measures repetitive or recursive patterns in the text. - **C (Contradiction):** Detects when the model generates text that contradicts its previous statements. - N (Narrative Drift): Monitors the output for significant deviations from the initial prompt. - **S (Safety):** Scans for content that violates safety policies (e.g., self-harm, violence, hate speech). - J (Injection): Identifies attempts at prompt injection or jailbreaking. - **P (PII):** Flags the presence of Personally Identifiable Information. The raw score is calculated by the formula below, then smoothed using an Exponential Moving Average (EMA) to produce the final APS* seen on the chart. APS* = EMA λ (clamp[0,1](Σ w_i * signal_i)) ## 3. Primary Tuning Levers The guardrail's behavior is controlled by three main sets of levers in the UI. ### 3.1. Thresholds (Hysteresis Control) The system uses two thresholds to create a stable control loop and prevent rapid on/off switching. • θhi (Intervention Threshold): This is the red line on the chart. If the APS* score rises above this value, the system will intervene (brake). Lowering this value makes the system stricter. • θlo (Recovery Threshold): This is the green line. The APS* must fall below this value for generation to resume. A higher value allows for a faster recovery. (Note: θlo must be less than θhi). #### 3.2. Smoothing (Reactivity Control) - λ (Lambda): This parameter controls the smoothing of the APS* score. - A **higher** value (e.g., 0.90) results in a smoother, less jittery score, making the system less prone to reacting to brief spikes. - A lower value (e.g., 0.75) makes the system more reactive and sensitive to immediate changes. ### 3.3. Weights (Priority Control) The weight sliders (w_r, w_c, etc.) are the most direct way to tell the system "what you care about." Raising the weight of a signal increases its contribution to the final APS* score, making the system more sensitive to that specific type of risk. ## 4. Advanced Control Layers #### 4.1. Severity Gate (Immediate Stop) For critical risks, the Severity Gate bypasses the smoothed APS* score for immediate action. θcrit (Critical Threshold): This value triggers an instant brake if the raw score for Safety (S), Injection (J), or PII (P) exceeds it. This provides a hard stop for the most severe violations. ## 4.2. Policy Layer (Rule-Based Control) The rules.json file allows for explicit, rule-based control on top of the dynamic signals. - deny_phrases: An array of strings. If any of these phrases are detected, the Safety (S) or Injection (J) signal is escalated, often tripping the θcrit gate. - redact_on_pii: A boolean that enforces PII redaction. ## 5. Tuning Recipes These presets are designed as starting points for common use cases. The **Balanced Default** reflects the current default settings in the Sohvie Shield application. | Recipe Name | Use Case &
Description | Thresholds &
Lambda | Weights (R, C,
N, S, J, P) | Key Modes | |---------------------|---|--|--|--| | Balanced
Default | A
general-purpo
se starting
point with a | θhi: 0.70, θlo:
0.55, λ: 0.80,
θcrit: 0.85 | 0.30, 0.20,
0.20, 0.15,
0.10, 0.05 | Hard Abort:
ON,
Auto-Resume:
ON | | | slight emphasis on preventing repetition and logical errors. Good for most initial tests. | | | | |--------------------|---|--|--|---| | Aggressive
Demo | Designed to be highly sensitive and trigger brakes easily to showcase the system's capabilities. | θhi: 0.60, θlo:
0.45, λ: 0.75,
θcrit: 0.80 | 0.35, 0.25,
0.15, 0.15,
0.07, 0.03 | Hard Abort:
ON,
Auto-Resume:
OFF | | Throughput
Mode | Lenient settings focused on maintaining generation flow, prioritizing only the most critical safety and PII risks. | θhi: 0.85, θlo:
0.70, λ: 0.90,
θcrit: 0.90 | 0.25, 0.15,
0.15, 0.20,
0.15, 0.10 | Hard Abort:
OFF,
Auto-Resume:
ON | | PII-Sensitive | Optimized for use cases where preventing data leakage is the top priority. The PII weight is significantly increased. | θhi: 0.72, θlo:
0.58, λ: 0.85,
θcrit: 0.85 | 0.20, 0.15,
0.15, 0.15,
0.10, 0.25 | PII Redact: ON | | Injection
Guard | Hardened
against prompt
injection and | θhi: 0.68, θlo:
0.52, λ: 0.80,
θcrit: 0.80 | 0.25, 0.20,
0.15, 0.15,
0.20, 0.05 | Hard Abort:
ON,
Auto-Resume: | | jailbreaking
attempts by
increasing the
weight of the | | OFF | |--|--|-----| | Injection (J) signal. | | | # 6. Best Practices for Tuning - Observe First: Run your target prompt using the Balanced Default recipe and watch the chart and the Explanations feed. This will tell you which signals are most active for your use case. - **Tune Iteratively:** Adjust one category of levers at a time (e.g., only adjust thresholds, then only adjust weights). - Use the Explanations: The "Explanations" log is your best friend. If you see "Reason: inj:jailbreak," you know to increase the weight for J or lower θcrit. - **Export for Analysis:** For deep dives, export the run data to a CSV to analyze the exact score values when a threshold was crossed. - Use Clean UI for Demos: When presenting, check the "Clean UI" box to hide the advanced controls for a more focused and polished look.